Spring 2025 Course Offerings

Undergraduate Statistics Course List   Graduate Statistics Course List   Course Search

Please note that these course listings are subject to change.

Introduction to Data Science I
STAT 11800=DATA 11800
Kriti Seghal
Sec 1: TR 9:30 AM–10:50 AM
Ryerson 251

Introduction to Data Science II
STAT 11900=DATA 11900
Amanda Kube
Sec 1: TR 9:30 AM–10:50 AM
Ryerson 276

Introduction to Data Science II
STAT 11900=DATA 11900
Amy Nussbaum
Sec 2: MWF 9:30 AM–10:20 AM
Ryerson 276

Statistical Methods and Applications
STAT 22000
Yibi Huang, Fei Liu
Sec 1: MWF 10:30 AM–11:20 AM
Stuart 105

Statistical Methods and Applications
STAT 22000
Yibi Huang, Fei Liu
Sec 2: MWF 11:30 AM–12:20 PM
Stuart 105

Statistical Methods and Applications
STAT 22000
Daniel Xiang
Sec 3: MWF 9:30 AM–10:20 AM
Eckhart 133

Statistical Methods and Applications
STAT 22000
Daniel Xiang
Sec 4: MWF 10:30 AM–11:20 AM
Eckhart 133

Linear Models and Experimental Design
STAT 22200
Fei Liu
Sec 1: MWF 10:30 AM–11:20 AM
MS 112 (5727 S. University Ave)

Applied Regression Analysis
STAT 22400=PBHS 32400
Sagnik Nandy
Sec 1: MWF 9:30 AM–10:20 AM
MS 112 (5727 S. University Ave)

Biostatistical Methods
STAT 22700
Lin Chen
Sec 1: TR 12:30 PM–1:50 PM
BSLC 008

Statistical Models and Methods
STAT 23400
Ryan McShane
Sec 1: TR 9:30 AM–10:50 AM
Eckhart 133

Statistical Models and Methods
STAT 23400
Ryan McShane
Sec 2: TR 11:00 AM–12:20 PM
Eckhart 133

Numerical Linear Algebra: An Introduction to Computation
STAT 24310
Yuehaw Khoo
Sec 1: TR 11:00 AM–12:20 PM
Pick 022

Statistical Theory and Methods II
STAT 24500
Jiaqi Li
Sec 1: MW 1:30 PM–2:50 PM
Eckhart 133

Multivariate Statistical Analysis: Applications and Techniques
STAT 24620=FINM 34700, STAT 32950
Mei Wang
Sec 1: TR 9:30 AM–10:50 AM
Cummings 101

Introduction to Statistical Genetics
STAT 26300=STAT 35490
Mary Sara McPeek
Sec 1: TR 11:00 AM–12:20 PM
Jones 226

Introduction to Causality with Machine Learning
STAT 27420=DATA 27420
Victor Veitch
Sec 1: TR 3:30 PM–4:50 PM
Jones 226

Mathematical Foundations of Machine Learning
STAT 27700=CMSC 25300, CMSC 35300
Haifeng Xu
Sec 1: TR 9:30 AM–10:50 AM
Stuart 101

Mathematical Foundations of Machine Learning
STAT 27700=CMSC 25300, CMSC 35300
Tian Li
Sec 2: TR 11:00 AM–12:20 PM
Stuart 101

Mathematical Foundations of Machine Learning
STAT 27700=CMSC 25300, CMSC 35300
Haifeng Xu
Sec 3: TR 12:30 PM–1:50 PM
Stuart 101

Optimization
STAT 28000=CAAM 28000
Kendra Burbank
Sec 1: TR 11:00 AM–12:20 PM
Pick 016

Undergraduate Research
STAT 29700
Yibi Huang
Sec 1

Bachelor's Paper
STAT 29900
Yibi Huang
Sec 1

Mathematical Statistics 2
STAT 30200
Claire Donnat
Sec 1: TR 12:30 PM–1:50 PM
Jones 226

Matrix Calculus and Matrix Analysis
STAT 30960=CAAM 30960
Lek-Heng Lim
Sec 1: MW 3:00 PM–4:20 PM
Jones 226

Applied Approximation Theory
STAT 31050=CAAM 31050
Jeremy Hoskins
Sec 1: TR 12:30 PM–1:50 PM
Jones 303

Introduction to Stochastic Processes I
STAT 31200
Wei Biao Wu
Sec 1: MWF 9:30 AM–10:20 AM
Jones 303

Partial Differential Equations
STAT 31220=CAAM 31220
Guillaume Bal
Sec 1: MW 9:30 AM–10:50 AM
Jones 226

Variational Methods in Image Processing
STAT 31240=CAAM 31240
Eric Baer
Sec 1: TR 11:00 AM–12:20 PM
Kent 106

Numerical Methods for Quantum Many-Body Physics
STAT 31390=CAAM 31390
Siyao Yang
Sec 1: TR 3:30 PM–4:50 PM
Ryerson 176

Applied Fourier Analysis
STAT 31460=CAAM 31460
Anjali Nair
Sec 1: MW 1:30 PM–2:50 PM
Ryerson 277

Applied Complex Analysis
STAT 31470=CAAM 31470
Timothy Roberts
Sec 1: MW 11:00 AM–12:20 AM
Jones 226

Analysis of Sampling Algorithms
STAT 31512
Frederic Koehler
Sec 1: TR 9:30 AM–10:50 AM
Jones 226

Monte Carlo Simulation
STAT 31521=CAAM 31521
Daniel Sanz-Alonso
Sec 1: TR 2:00 PM–3:20 PM
Eckhart 206

Multivariate Statistical Analysis: Applications and Techniques
STAT 32950=FINM 34700, STAT 24620
Mei Wang
Sec 1: TR 9:30 AM–10:50 AM
Cummings 101

Modern Methods in Applied Statistics
STAT 34800
Aaron Schein
Sec 1: TR 3:30 PM–4:50 PM
Eckhart 133

Data Analysis Project
STAT 34900
Mary Sara McPeek
Sec 1: TR 2:00 PM–3:20 PM
Jones 303

Fundamentals of Computational Biology: Algorithms and Applications
STAT 35460=HGEN 48800
Mengjie Chen, Xin He
Sec 1: MW 1:30 PM–2:50 PM
BSLC 305

Introduction to Statistical Genetics
STAT 35490=STAT 26300
Mary Sara McPeek
Sec 1: TR 11:00 AM–12:20 PM
Jones 226

Machine Learning and Large-Scale Data Analysis
STAT 37601=CMSC 25025
Yali Amit
Sec 1: TR 2:00 PM–3:20 PM
Eckhart 133

Machine Learning
STAT 37710=CAAM 37710, CMSC 35400
Risi Kondor
Sec 1: TR 9:30 AM–10:50 AM
Stuart 102

Solving PDEs with Machine Learning
STAT 37783=CAAM 37783
Yuehaw Khoo
Sec 1: TR 12:30 PM–1:50 PM
Ryerson 176

Representation Learning with Machine Learning
STAT 37784=DATA 37784
Victor Veitch
Sec 1: TR 11:00 AM–12:20 PM
Ryerson 255

Topics in Mathematical Data Science: Spectral Methods and Nonconvex Optimization
STAT 37797=CAAM 37797
Cong Ma
Sec 1: TR 2:00 PM–3:20 PM
Ryerson 177

Measure-Theoretic Probability III
STAT 38300
Per Myland
Sec 1: MW 1:30 PM–2:50 PM
Ryerson 178

Masters Seminar: Statistics
STAT 39900
Mei Wang
Sec 1

Reading/Research: Statistics
STAT 40100
Sec 1

Advanced Topics in Causal Inference
STAT 41542=CAAM 41542
Xinran Li
Sec 1: MW 1:30 PM–2:50 PM
Ryerson 176

Statistics of Optimal Transport
STAT 41561=CAAM 41561
Promit Ghosal
Sec 1: MW 3:00 PM–4:20 PM
Eckhart 133

Theoretical Neuroscience: Statistics and Information Theory
STAT 42600=CPNS 35600, ORGB 42600
Stephanie Palmer, Ramon Nogueira Manas
Sec 1: TR 9:30 AM–10:50 AM
Jones 303

Consulting in Statistics
STAT 44100
Claire Donnat, Aaron Schein, Mei Wang
Sec 1: W 12:00 PM–1:00 PM
Jones 303